9x^2-1=(3x+1)(5x-8)

Simple and best practice solution for 9x^2-1=(3x+1)(5x-8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x^2-1=(3x+1)(5x-8) equation:



9x^2-1=(3x+1)(5x-8)
We move all terms to the left:
9x^2-1-((3x+1)(5x-8))=0
We multiply parentheses ..
9x^2-((+15x^2-24x+5x-8))-1=0
We calculate terms in parentheses: -((+15x^2-24x+5x-8)), so:
(+15x^2-24x+5x-8)
We get rid of parentheses
15x^2-24x+5x-8
We add all the numbers together, and all the variables
15x^2-19x-8
Back to the equation:
-(15x^2-19x-8)
We get rid of parentheses
9x^2-15x^2+19x+8-1=0
We add all the numbers together, and all the variables
-6x^2+19x+7=0
a = -6; b = 19; c = +7;
Δ = b2-4ac
Δ = 192-4·(-6)·7
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{529}=23$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-23}{2*-6}=\frac{-42}{-12} =3+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+23}{2*-6}=\frac{4}{-12} =-1/3 $

See similar equations:

| 4+4k=4k+6 | | x÷6=81 | | 45+x=442 | | 2/3(3x+12)+3x-3=-10 | | 10/x-4-1/x=1 | | 3y−3=3y−3 | | 3x=13x10x+ | | x/9=189 | | 1/4x-7=-4 | | X-9=5x+5 | | 19.63+x=41.56 | | 1+5x-4=-18 | | 2(3m+4)=44 | | n+3/4=19/20 | | x/56=16 | | 71=x-13 | | -7(2x-5)+3(x-4)=-21 | | 4x-16=5x-2 | | -6x-4-6=-16 | | 3x-40=4-x | | x+8.9=156 | | 8w+9-3w+3=47 | | (-x/5)-9=7 | | -2=-(-n-8) | | X+11+8x=29 | | (x/5)-9=7 | | 5/7+r=9 | | -15x+21=-5x-19 | | 2(3x-7)-4(5x+2)=7x-1 | | 9n+1=6+9 | | x-2-2=-6 | | 4x/5-2=7/20+x+4 |

Equations solver categories